Extension theorems for vector valued maps

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extension theorems for vector valued maps

We revisit studies on extension of Lipschitz maps and obtain new results about extension of displacements of bounded strain tensors. These questions are of interest in elasticity theory, optimal designs, as well as in functional analysis. Résumé Nous discutons l’extension d’applications Lipschitziennes et donnons, entre autres, une nouvelle démonstration d’un théorème de Schönbeck. Puis nous ét...

متن کامل

Fixed Point Theorems For Set-Valued Maps

Preface In this thesis we provide an introduction to fixed point theory for set-valued maps. It is not our goal in the present work to give an outline of the status quo of fixed point theory with all its newest achievements, but rather to give a thorough overview of the basic results in this discipline. It then should be possible for the reader to better and easier understand the newest develop...

متن کامل

Wiener Tauberian Theorems for Vector - Valued Functions

Different versions of Wiener’s Tauberian theorem are discussed for the generalized group algebra LI(G,A) (of integrable functions on a locally compact abelian group G taking values in a commutative semisimple regular Banach algebra A) using A-valued Fourier transforms. A weak form of Wiener’s Tauberian property is introduced and it is proved that LI(G,A) is weakly Tauberian if and only if A is....

متن کامل

Multidimensional Tauberian Theorems for Vector-valued Distributions

We prove several Tauberian theorems for regularizing transforms of vector-valued distributions. The regularizing transform of f is given by the integral transform M φ(x, y) = (f ∗ φy)(x), (x, y) ∈ R n × R+, with kernel φy(t) = yφ(t/y). We apply our results to the analysis of asymptotic stability for a class of Cauchy problems, Tauberian theorems for the Laplace transform, the comparison of quas...

متن کامل

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2006

ISSN: 0021-7824

DOI: 10.1016/j.matpur.2005.04.005